
Sanity checks in Aleph
(Filtering Bibliographic and Item Records in Aleph with

Cinege)

Nagy, Elemér Károly
eknagy@omikk.bme.hu

Krauthausen, Leon
krauthausen@ub.fu-berlin.de

IGELU 2006 Stockholm

Wikipedia (http://www.wikipedia.org):
�Aleph: Aleph, an integrated library system from
Ex Libris LTD used to manage library operations ...
�Cinege: Cinege is a GPL-ed (free), platform
independent package of tools ...
�Filter: A filter is a computer program to process a
data stream.
�Bibliographic record: no page with that title
exists
�Item record: no page with that title exists
�So, I will talk about processing ???s that are originated
from a commercial ILS (LMS), with some free and
platform independent tools.

Definitions
1 minute

�But who I am to talk about such serious issues?
�I am the developer of Cinege and doing my PhD in IT -
please feel free to ask deep technical questions.
�I have been working with Aleph since 2002 and
produced a few hundred error lists with different
scripts/programs.
�I converted all our Bib/Item records for various
purposes a few times - sometimes heavily modifying
them.
�But even if I am working in a library, I am not a
librarian - please don't be angry if I use “news” instead
of “serial”.
�I will talk about filtering Bib, Adm and Item in general
and will show Cinege examples from BUTE and FUB.

Comments on my person
1 minute

These ???s we talk about
0.5 minute

�Contains most of the information that is common about
groups of items (title, author, location, ...)
�Needs a very flexible format (Example: a book with 13
authors, with 3 primary authors, 4 secondary authors, 3
editors, 2 deputy editors and 1 translator)
�There are special cases (multi-volume books,
conference proceedings, electronic books, holding
records, authority records, audiovisual books, books
with CDs, ...)
�Cross-references between records, libraries, different
types of records
�Different practice in different libraries lead to the need
of different tools to handle records

Bibliographic records (Z00)
0.5 minute

�Contains most of the information that may be different
it different physical items (barcode, call number,
location, protection mark, volume, ...)
�A pretty inflexible format with a fixed number of fields
and a fixed format of the fields hard-coded
�On the other hand, the values of the fields are locally
defined just as the connection between the fields
�Because of the fixed format, some fields are used to
store something else than it was designed for, e.g.,
call_no is translated to „Shelf code” and call_no_2 is
translated to „Call number”
�Different practice in different libraries lead to the need
of different tools to handle records

Item records (Z30)
0.5 minute

�Links Item and Bib records
�May contain the information that is common about a
smaller groups of items (volume, location, protection
mark) - but not in Aleph.
�Needs a flexible format
�Some Bib records have no Item records
�Some Bib records have no Adm records
�Z103 is (re)generated from the BIB records - so it is
only a cache - altough very useful

Administrative records (Z103)
0.5 minute

� Some information (location, protection mark, volume)
can be stored in different places (Bib or Item), thus we
once more see different practices.
� Some rules may be implemented in local regulations
only, without software implementation (if z30_collection is
'Closed stack' then z30_item_status should not be '01'). In
some cases, Aleph implementation of such rules is
practically impossible.
� Some (circular and one-to-many) links may be very hard
to handle forth and back (if there is an item with a status of
92, then amongst the items that are linked to the same Bib
record, there can be no item with a status of 23).

Main problems with these records
1 minute

� Personnel errors:
- in data entry
- in data modification
- in data deletion

� Import errors:
- character set errors
- missing fields
- extra fields
- fields with invalid format
- fields with invalid value

Error sources I.
1 minute

� Data is imported:
- from external sources
- when upgrading Aleph
- when upgrading Oracle
- when upgrading OS

� Data format is possibly changed:
- by new standards
- by new media types
- by new softwares
- by new personnel
- by new technologies

Error sources II.
1 minute

� Let us assume we:
- had an empty dBASE / ASCII database in 1975
- migrated 500K records to FoxPro / Latin2 in 1985
- migrated 1000K records to Aleph300 / Latin2 in

1995
- migrated 1500K records to Aleph500 / Latin2 in

2000
- migrated 2000K records to Aleph500 / UTF-8 in

2005

� So, if we hadn't upgraded (or changed) the DBMS, the
OS or the ILS, except when migrating, then 25% of our
records are converted 4 times, 25% is converted 3 times,
etc. ...

Life of a database
1 minute

� Let us assume we:
- had an empty dBASE / ASCII database in 1975
- migrated 500K records to FoxPro / Latin2 in 1985
- migrated 1000K records to Aleph300 / Latin2 in

1995
- migrated 1500K records to Aleph500 / Latin2 in

2000
- migrated 2000K records to Aleph500 / UTF-8 in

2005

� So, if we hadn't upgraded (or changed) the DBMS, the
OS or the ILS, except when migrating, then 25% of our
records are converted 4 times, 25% is converted 3 times,
etc. ...

� But we did, didn't we?

Life of a database
0.5 minute

� When we migrate data, the data format is changed.
(Anybody has any counter-examples?)
� When the data format is changed, data must be
transformed to fit into the new format.
� If the input records is flawless, and the conversion is
perfect, then the output records are good enough.
� If the conversion is not perfect, then even in the best case,
the output record will be faulty.
� If the input record is not flawless, then even in the best
case, the output record will be faulty.
� If the input record is not flawless and the conversion is
not perfect (reality), we are in serious trouble.

Problems with migration
1.5 minute

� So we have 3% (0.1% to 10%) records with errors. So?

Records with errors
0 minute

� So we have 3% (0.1% to 10%) records with errors. So?
� A record with error might not be found.
� Example: if query ends with language is 'hun', you won't
find records with language being 'hu' or 'hum' or 'magyar'

or 'hungarian' or 'enggehun')
� A less precise query (“language like '%hun%') might find
it, but is much slower and may find records with language

being 'zahune' (written in 'zah' and 'une' languages).
� When we convert 'hu', the output record may contain the
same error, may be without a language code, or may be a
record wreck (if conversion expected it to be 3 characters
long) or may fail (on that record or entirelly).

Records with errors
1 minute

� Defensive programming (defensive error handling) tries
to work-around or repair errors, concealing it as much as
possible. This may be great in video conference software.
� Agressive programming (agressive error handling) tries to
produce the most serious possible error. This may be great
in accounting software.
� More defensive error handling typically means more user
friendly, more convenient and a more marketable product.
� More agressive error handling typically means more error
messages, more user problems and a cleaner database.
� In this view, defensive is a short-term approach and
aggressive is a long-term approach.
� IMHO, converters and filters should be agressive.

Sidenote: Offensive and Defensive programming

1 minute

� Converters are programs that modify some or all of the
records, treating all of them the same way.
� Filters are programs that drop some or all of the records,
thus treating records in different ways.
� The simplest way to differentiate them is to refer to their
function - a program that is used to filter records is a filter,
even if it was created as a converter but omits records with
errors. A program that was created as a filter, but adds
fields as a side-effect can be used as a converter.
� It is very useful, if a group of converters and filters can be
pipelined because the output of some of these programs is a
suitable input for some of these programs.

Converters and filters
1 minute

Pipeline diagram
1 minute

� Script languages (AWK, VB, PERL) are very fast to develop -
but often referrer to as „write only” languages, modifications
are hard to implement and there are often problems with typical
plain-text input/output files. Ideal for „run exactly once” and
„never to be modified” programs.
� Traditional programming languages (C, Fortran, Cobol) are
much slower to develop but provide a very rich set of libraries
and programs written in them are easier to maintain. Branching
of code and lost source code are still problems.
� Object-oriented programming languages (C++, Java, Phyton)
are slower to learn but are much easier to maintain, as only
some components needs to be changed/replaced. Ideal for
complex and/or slowly (but steadily) changing programs.

Sidenote: Programming languages I

1 minute

� Programming languages may be compiled, interpreted or
hybrid languages (categories may interlap).
� Interpreted languages are slower, more platform-independent
and the source code typically can be regenerated from the
running program relatively easily (companies don't like this).
� Compiled languages are faster by magnitudes and source code
is typically much harder to regenerate, once source code
became unavailable (lost code = practically unmodifiable
program).
� Hybrid languages include PERL and Java, both having a
compilation to a binary form which is then interpreted, being
efficient enough and keeping source code in reach.

Sidenote: Programming languages II

1 minute

� PERL and Java both support regular expressions.
� Regular expressions are very dense pattern definitions that can
be used to formulate complex search criteria.
� Built-in parsers and matchers are well tested and fast - no
need to reinvent the wheel.
� Not easy to read
� Examples:
^.*$ anything
^.*this.*$ anything containing “this”
^this$ this (without anything behind or after it)
^.*[a-z]{3,6}$ anything that ends with 3 to 6 of the 24 latin1 lc. letters
^[^].*$ not starting with space
^.*[^0-9]$ not ending with a digit
^[0-9]{4,4}.+$ four digits and at least one character after it
^(19[5-9][0-9])|(200[0-6])$ any four-digit number between 1950 and 2006

Sidenote: Regular expressions

1 minute

� A GPL-ed librarian data filtering command-line tool package
written in Java, that uses Mysql.
� GPL-ed means it is free (free as in free speech and also free as
in free beer)
� Java means it will run on Windows, Linux, Aix, Solaris, ...
� Command-line means it can be run in scripts at night, used in
web applications or on headless machines (mainframes)
� Using MySql means that it can use a local database or use a
remote database or use several remote database or use
combinations of the above on almost any platform (more than
16 operating systems supported).

Cinege I.
1 minute

� A GPL-ed librarian data filtering command-line tool package
written in Java, that uses Mysql.
� GPL-ed means it is free (free as in free speech and also free as
in free beer)
� Java means it will run on Windows, Linux, Aix, Solaris, ...
� Command-line means it can be run in scripts at night, used in
web applications or on headless machines (mainframes)
� Using MySql means that it can use a local database or use a
remote database or use several remote database or use
combinations of the above on almost any platform (more than
16 operating systems supported).
� I have a Cinege with complete snapshots of BUTE Adm, Bib
and Item data - on this laptop.

Cinege I.
1 minute

Cinege II.
1 minute

� Sanity checks, containing records that match or does not
match given criteria.

Example: Find books with two or more primary titles.

� Working lists used in different reorganizations,
containing all kinds of Item and/or Bib information.

Example: Find books in English, German or French to support
creation of a new EU reading room.

� Daily statistics containing agglomerated data.
Example: Give loaning statistics (min, max, avg) on books in EU

reading room and give title of most popular items.

� Decision support lists.
Example: Create list of patrons who lost at least two books with a

value of at least 10 Euros and have at least 20 Euros total fine.

Lists that can be made with Cinege
2 minute

� On-line queries are very useful, for example, in a case
when someone is repairing the records and want to see the
current records with error by pressing a force reload.
� Some people like to have error lists in batches, for
example, as auto-mailed excel files in the morning.
� Off-line queries are more close to the data warehouse
approach and often called reports - very handy in
controlling staff and efficiency, not to mention upgrade
preparation or upgrade testing.
� In some cases, some queries are so slow, that on-line is
not an option (Bibliographic sanity checks).
� In some cases, we can chose which one to use - in some
cases, we can use off-line only.

On-line vs. off-line
1 minute

� Online sanity checks can be useful in all those cases
where they can be achieved by simple, fast running SQL
queries.

� In many cases, specially regarding checks on item
records, only staff members (of a specific sublibrary)
can decide what fields and what dependencies need to
be checked.

� Embedding SQL scripts in PHP using the formgen
package provides staff members (with no direct access
to the server) with the ability to execute sanity check
queries on their own.

Online sanity checks with formgen

� The output of the queries can be produced as HTML or
Excel lists or as CSV files.

� Macro programming can provide a easy way to search
and load a specific record in an Aleph module by just
highlighting a barcode or an ID and pressing a hotkey.

Online sanity checks with formgen

� Check collection codes for invalid item status.

� Find item records with a code for a closed stack
collection "MAG-G" and an (invalid) item status
of "01" for open shelf loan.

� Use of an AutoHotkey macro to load records in
the GUI-module.

Example of an online sanity check

Step 1: List collection and item status

Example of an online sanity check

[...]

20 records need to
be corrected

Example of an online sanity check
Step 2: Find records with collection code

"MAG-G" and item status "01".

With the help of a special macro (in this
case an AutoHotkey macro), the
highlighted barcode can be used to
search for the record in GUI module.

� If the number of records that need to be
corrected is too large to do so manually, the
record IDs of the query result can be saved
automaticaly in a file in the ../alephe/scratch
directory.

� This file can than be used as an input file for the
p-manage-62 service supplied with Aleph.

Example of an online sanity check

Example of an online sanity check

[...]

Find records with any call number that
have an "in process" status (GG)

� Specification: Because a new EU reading room is to be
opened soon, we need to get a list of candidate items.
� All items should be written in English, German or French.
� The language codes are stored in the Bib record, in field
041, in subfield a and are stored in three-letter language

codes (ISO 3166-1 alpha-3).

� The list should contain the bibliographic system numbers,

the titles (245/a), the city if publication (260/a) and the

language codes (041/a).

�Later, more specialised lists with item number, number of

loans, etc. will be required.

Sanity check example I.
1 minutes

� Trivial solution to get Bib numbers:
java Exporter DB2BIB:b1.csv:IFANYMATCHES#\

NO_FILTER#041#a#^.*((eng)|(ger)|(fre)).*$

� This founds all the records we need, right?

Sanity check example II.
0.5 minutes

� Trivial solution to get Bib numbers:
java Exporter DB2BIB:b1.csv:IFANYMATCHES#\

NO_FILTER#041#a#^.*((eng)|(ger)|(fre)).*$

� This founds all the records we need, right?

� Wrong. It does not find any records with errors:
- No 041/a field in the bib records.
- 041/a field contains uppercase letters.
- 041/a field contains whitespaces, commas, etc.
- 041/a field contains two-letter codes (ISO 3166-1 alpha-2)

- 041/a field contains language names ('english')

Sanity check example II.
1 minute

� To get records with no 041/a:
java Exporter DB2BIB:w1.csv:\

IFMULTIPLICITYCHECKSUCCEEDS#041#.*#a#false#0#0

� To get records with at least one 041/a:
java Exporter DB2BIB:c1.csv:\

IFMULTIPLICITYCHECKFAILS#041#.*#a#false#0#0

� To get records with valid 041/a:
java Exporter DB2BIB:w1.csv:IFNOTALLMATCHES\

#NO_FILTER#041#a#^(([a-zA-Z]){3,3})+$

� To get records with language codes mentioned:
java Exporter DB2BIB:g1.csv:IFANYMATCHES#\

POST_ALPHANUMERIC#041#a#\

^.*((eng)|(ger)|(fre)|(ENG)|(GER)|(FRE)).*$

Sanity check example III.
3 minutes

� To get the first titles, publishing cities and language

codes for the BibSysNos, we can:
java Exporter BIB2LIST:g1.csv:\

FIRST#245#a:FIRST#260#a:FIRST#041#a

� To get the first titles and publishing cities and all the
language codes for the BibSysNos we can:
java Exporter BIB2LIST:g1.csv:\

FIRST#245#a:FIRST#260#a:ALL#041#a

�There are plenty (9 directives, 14 subdirectives) of other
possibilities - they are evaluated in Exporter.pdf in the
data/cinege/docs/ directory.
� These filters are designed to be used in pipeline, like
DB2BIB => BIB2ADM => Adm2LoanNumber

Sanity check example IV.
2 minutes

� So, the final, ultimate solutions that also generates two

error lists as a side effect:
� DB2BIB:w1.csv:IFMULTIPLICITYCHECKSUCCEEDS#041#.*#a#false#0#0

BIB2LIST:w1.csv:FIRST#245#a:FIRST#260#a:ALL#041#

� DB2BIB:w2.csv:IFMULTIPLICITYCHECKFAILS#041#.*#a#false#0#0:\

IFNOTALLMATCHES#NO_FILTER#041#a#^(([a-zA-Z]){3,3})+$

BIB2LIST:w2.csv:FIRST#245#a:FIRST#260#a:ALL#041#a

� DB2BIB:g1.csv:IFMULTIPLICITYCHECKFAILS#041#.*#a#false#0#0:\

IFALLMATCHES#NO_FILTER#041#a#^(([a-zA-Z]){3,3})+$:\

IFANYMATCHES#POST_ALPHANUMERIC#041#a#\

^.*((eng)|(ger)|(fre)|(ENG)|(GER)|(FRE)).*$

BIB2LIST:g1.csv:FIRST#245#a:FIRST#260#a:ALL#041#a

� It might look frightening at first.

Sanity check example V.
1 minutes

� So, the final, ultimate solutions that also generates two

error lists as a side effect:
� DB2BIB:w1.csv:IFMULTIPLICITYCHECKSUCCEEDS#041#.*#a#false#0#0

BIB2LIST:w1.csv:FIRST#245#a:FIRST#260#a:ALL#041#

� DB2BIB:w2.csv:IFMULTIPLICITYCHECKFAILS#041#.*#a#false#0#0:\

IFNOTALLMATCHES#NO_FILTER#041#a#^(([a-zA-Z]){3,3})+$

BIB2LIST:w2.csv:FIRST#245#a:FIRST#260#a:ALL#041#a

� DB2BIB:g1.csv:IFMULTIPLICITYCHECKFAILS#041#.*#a#false#0#0:\

IFALLMATCHES#NO_FILTER#041#a#^(([a-zA-Z]){3,3})+$:\

IFANYMATCHES#POST_ALPHANUMERIC#041#a#\

^.*((eng)|(ger)|(fre)|(ENG)|(GER)|(FRE)).*$

BIB2LIST:g1.csv:FIRST#245#a:FIRST#260#a:ALL#041#a

� It might look frightening at first, but it is easy to get used

to it - there are repeating patterns inside.

� Commercial support is also available on decent prices, if

you want to remain frightened.

Sanity check example V.
1 minutes

�Later, management decides that we only put books that
have been loaned to this new reading room. So, how can
we get the number of loans?
�Simple solution: Z36, Z36H, group by, count
�Problem: If we have 10 items and 22 loans, we do not
know if all 10 items were loaned - maybe only 5 items
were loaned. So, the SQL query gets complicated (two
tables to merge, having clause, ...).

�Alternatively, we do it with cinege:
BIB2ADM:g1.csv.out.csv

ADM2LoanNumber:g1.csv.out.csv.out.csv:200501010000:200512312400

�That's all. It's done. Output list can be loaded to Excel.

�Many other directives to use in the documentation.

Sanity check example VI.
1 minutes

Sanity check example VII.
1 minutes

Off-line: Cinege / Purple example
1 minute

Off-line: Cinege / Purple example
1 minute

lila.properties
� Translation file
� Easy-to-use format
� Unicode
� Unlimited # languages

Off-line: Cinege / Purple example
1 minute

purple.properties
� Security configuration file
� Basic authentication:

� local file database
� simple to maintain

� Patron authentication:
� Can share files with patrons
� Requires a Java process

on the Aleph server
� Staff menu authentication:

� Seamless integration
� Prototype works finely

Off-line: Cinege / Purple example
1 minute

definitions.properties
� Defines headers and files to show

Off-line: Cinege / Purple example
1 minute

translations.properties
� Defines lines metadat

Off-line: Cinege / Purple example
1 minute

Off-line: Cinege / Purple example
1 minute

Thank you very much!

Any questions?
(if there is any time left)

Nagy, Elemér Károly
eknagy@omikk.bme.hu

Krauthausen, Leon
krauthausen@ub.fu-berlin.de

IGELU 2006 Stockholm

