

Predicting Students Success with Leganto, a proof of concept machine learning project

Mrs Linda Sheedy August 2019

A global university

Western Australia | Dubai | Malaysia | Mauritius | Singapore

With thanks to

Mr Peter Green, Mr Gal Darom, Mr Tomer Katz, and Mr David Lewis

For their contributions to this project and this presentation

T.L. Robertson Library at Curtin Perth

. 7 22

Curtin University

Learning and Teaching being delivered from

Perth Western Australia (including Bentley, and Perth City) Kalgoorlie Western Australia **Malaysia Campus Mauritius Campus Singapore Campus** Dubai

Leganto - Reading List Solution

• In August 2015,

Curtin Library chooses the Ex Libris Leganto as its new Reading List solution

- Curtin Library successfully implemented in the first Semester 2017
- Between 2016 and August 2019, teaching staff have
 - created 4,700+ Reading Lists (includes Reading Lists migrated from previous system)
 - added over 115, 300 citations which resulted in
 - 1.5 million (non-unique) full text views of resources by 42, 400+ unique active

students

A "Proof of Concept" project

- Ex Libris approached Curtin with a proof of concept proposal in 2017
- To use machine learning to investigate the correlation between student success and

activity within the Leganto Reading List

- Curtin has been using learning analytics to predict student success and to identify students at risk of failing to complete their studies
- Project would add to early intervention strategies
- Offer from Ex Libris to partner in a proof of concept project was accepted

Early indication for students at risk

......

Advanced analytics Gal Darom & Tomer Katz

T = f (Data) - What is the Business Need We Seek?

T - Predicting students early in the semester that most likely will struggle with their course

T = f(Data) – Creating the Dataset

Data - Data is available from two sources:

- Curtin University
- Students Profile
- Students grades and academic Status
- EX Libris Leganto
- Students engagement (usage) with the course resource list

Time and Data

- Significant time and effort to produce the Curtin data
- Negotiation with Student Services and Digital and Technology Solutions
- Leganto data needed to accumulate over multiple semesters
- Success data is reported after the event

T = f(Data) – Creating the Dataset

- Matching Process to combine one dataset from the two data sources
- Developing meaningful features from the unified dataset to improve the model accuracy
- Examples:
 - Student engagement in relation to the average class engagement
 - Weighted student engagement per course

Complexity of Data

- People need to understand the data conversations over the phone
- Course structure is complicated
- Student demographics complicated
- Language is not standardised unit vs course, instructor vs coordinator
- Definition of 'success' matured over time

$T = \mathbf{f} (Data)$ – Choosing the Algorithm

 f_- During the PoC several algorithm reviewed

- 1. Decision Tree (DT)
- 2. General Linear Model (GLM)
- 3. Naïve Baysian (NB)
- 4. Support vector machine (SVM)
- 5. Random Forest (RF)

$T = \mathbf{f} (Data)$ – Choosing the Algorithm

We found that for the relevant dataset and business need the Random Forest (RF) algorithm was the best suited classifier

rf variable importance		data.Grade_AVG	Student historical average grades	
data.GRADE_AVG data.STU_AVERAGE_USAGE_PAST Usage_stu_course Age_numeric rel_w1	overall 100.000 63.315 33.274 28.325 24.942	data.STU_AVEGRAGE_USAGE_PAS T	Historical usage engineered feature	
		Usage_stu_course	Weighted student usage per course	
		Age_numeric	Student age	
Confusion Matrix and Statistics Reference Prediction 0 1		rel_w1	Student usage in week 1 in relation to class	
0 1325 108 1 11 25 Accuracy : 0.919 95% CI : (0.9038, 0.9324)		The model total accuracy is 91.9%		
NO Information Rate : 0.9095 P-Value [Acc > NIR] : 0.1085 Kappa : 0.2676 Mcnemar's Test P-Value : <2e-16		Recall: The model will catch 18.8% of students who are at risk (25 / (108+25))		
Sensitivity : 0.9918 Specificity : 0.1880 Pos Pred Value : 0.9246 Neg Pred Value : 0.6944 Prevalence : 0.9095 Detection Rate : 0.9020 Detection Prevalence : 0.9755		Precision: Prediction of risk student is 69.44% (For 10 students predicted as at risk, 7 will be actually at risk) (25 / (11+25))		
Balanced Accuracy : 0.5899 'Positive' Class : 0		18	Exclusions.	

How the Functionality May Work in the Future

The Future

- Proof of Concept is ongoing as more time and data can improve the model
- Too early for Ex Libris to know if this might feature in Leganto in the future

Thank you

Make tomorrow better.

Gal.Darom@exlibrisgroup.com Tomer.Katz@exlibrisgroup.com

Thank you!

Images

A large blank world map

https://upload.wikimedia.org/wikipedia/commons/c/cf/A large blank world map with oceans marked ______in___blue.PNG (This file is licensed under the Creative Commons Attribution-Share Alike 2.5 Generic, 2.0 Generic and 1.0 Generic license.)